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SUMMARY

The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–
composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to
incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed.
Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent
flow cause the stochastic particles approaching a solid wall to reverse their direction of motion normal to the
wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in
a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting
turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure
correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure
correction strategy is easy to implement and is completely consistent with the time-marching scheme used for
the solution of the Lagrangian momentum equations. The results show remarkable agreement with bothk–E and
algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the
turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than thek–E
predictions.
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1. INTRODUCTION

The velocity–composition joint PDF method1 is an important tool for the computation of reacting
turbulent flows. Starting with the conservation equations for mass, momentum and compositions of
various species (for a chemically reactive flow), a single transport equation can be derived for the
joint probability density function of velocity and composition,fuf�V ;c; x; t�, as described in
Reference 1. The quantityfufdVdc represents the probability thatV4U4V � dV and
c4f4c� dc occurs simultaneously, whereU is the velocity vector,F is the set of all scalars
(temperature or enthalpy and concentrations) andV andc are independent sample space variables
corresponding toU and f respectively. The transport equation for the joint PDF is a
multidimensional partial differential equation and cannot be solved efficiently by traditional finite
difference or finite volume techniques. The Monte Carlo method is used instead. In this method the
fluid within the whole computational domain is discretized into representative ‘particles’ (or
samples). These ‘particles’ then move with time and their motion is governed by their Lagrangian
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momentum equations, which are recast in such a way that the forces acting on these representative
‘particles’ are modelled after stochastic processes. In accordance with the preceding discussion, the
‘particles’ are not actual fluid particles; however, using the PDF approach, their motion is modelled
in such a way that their behavior, in an averaged sense, represents actual fluid behavior. The Monte
Carlo algorithm is a natural way to trace the motion of these samples within the solution domain and
is, therefore, adopted here.

During the last two decades the velocity–composition joint PDF method has been used effectively
to predict hydrodynamic and scalar fields in free shear flow situations, namely jet flames, mixing
layers and wakes.2–5 So far, little effort appears to have been directed towards applying this method
to internal flows or flows past solid surfaces. Internal flow calculations in the past, which have used
the PDF method, involved a full-fledged finite volume calculation alongside the Monte Carlo
calculations.6,7 First, a fully converged steady state solution of the hydrodynamic field was obtained
using a traditional turbulence model such as thek–E model. This solution was used as initial condition
for the Monte Carlo simulation, which was then taken to full convergence of the steady state
equations. The strength of the PDF method lies in its ability to compute all moments between
fluctuating quantities without any assumptions. For this reason the new mean velocity field and
Reynolds stresses obtained from the Monte Carlo simulation were then fed back into the finite
volume code to recalculate the pressure field. The procedure was repeated until convergence. A
pressure correction based on the SIMPLE algorithm8 was used. In the recent past, Anandet al.9 have
demonstrated a solution of the pressure field in conjunction with the Monte Carlo simulation using
two-dimensional cross-validated splines. However, several important issues still remain unaddressed.
Previous researchers have not addressed the question as to how a stochastic particle behaves as it
approaches a solid wall. In this article this issue has been investigated in detail. Secondly, a pressure
correction algorithm has been developed here which is completely consistent with the time-marching
scheme used for tracing the stochastic particles and is more efficient than the SIMPLE-based pressure
correction used by researchers in the past. The PISO algorithm, developed by Issa,10 has been
followed in the process of developing this pressure correction scheme. The advantage of the current
pressure correction scheme will be discussed later in this article.

1.1. Governing equations

The governing equations presented in this subsection are the equations of motions for the
stochastic particles. The formulation and modelling of the equations presented in this section are
entirely due to Haworth and Pope.5 For details the reader is referred to this reference and Reference 1.

For an isothermal, non-reacting, incompressible turbulent flow the change in velocity,DUi*, and
the change in position,Dxi*, of a stochastic particle during a time intervalDt may be written as5

DUi* � Gij�Uj* ÿ �Uj�Dt � �C0E�
1=2
DWi ÿ

1
r

@�p

@xi
Dt;

Dxi* � Ui*Dt; �1�

where�p is the mean pressure,r is the density of the medium and�Ui is the mean velocity of the flow at
any locationxi (or mean Eulerian velocity). Equation (1) has been structured after the generalized
Langevin model.5 The first two terms in the first equation represent the forces resulting from the
fluctuating pressure gradient and viscous dissipation. The functionWi�t� represents an isotropic
Wiener process. It is a non-differentiable function which, when integrated over time, results in a
random number drawn from a Gaussian distribution whose mean is zero and whose variance is equal
to the time interval over which the function has been integrated. The first of these two terms is
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deterministic in nature and its effect is always to drive the particle velocity towards the mean
velocity. The second term causes diffusion in velocity space and its effect is to cause the velocity
fluctuations to assume a Gaussian distribution starting from an arbitrary distribution. The third term
represents transport by the mean pressure gradient. The tensorGij for a general inhomogeneous
turbulent flow assumes the form5

Gij �
a1dij � a2bij

t
� Hijkl

@
�Uk

@xl
; �2�

wheret is the time scale for the dissipation of turbulent kinetic energy (often referred to as simply the
‘turbulent time scale’) anda2 � 3�78. The quantitya1 is given by5

a1 � ÿ�12 �
3
4 C0� ÿ a2bijbji ÿ tg*bkibil

@
�Uk

@xl
; �3�

wherebij is the normalized anisotropy tensor and is expressed as

bij �
1
2

u0iu
0
j

k
ÿ 1

3 dij; �4�

where u0i are the fluctuations in velocity. The constants in equation (3) areC0 � 2�1,
g1 � ÿ1�24; g2 � 1�04; g3 � ÿ0�34; g4 � 0; g5 � 1�99; g6 � ÿ0�76; b1 � ÿ0�2; b2 � 0�8;
b3 � ÿ0�2 and

g* � g2 � g3 � g5 � g6 � 1�93: �5�

The fourth-order tensorHijkl in equation (2) is given by

Hijkl � b1dijdkl � b2dikdjl � b3dildjk � g1dijbkl � g2dikbjl � g3dilbjk � g4bijdkl � gbikdjl � g6bildjk;

�6�

wheredij is the Kronecker delta.
An important point to note here is that, since equation (1) is a Lagrangian equation, convective

terms are absent in it, which implies that in the PDF approach convective transport is treated without
approximation. Also, since the focus of this article is on the hydrodynamic aspects of the flow, the
scalar transport equation has been omitted in the preceding discussion. The above equations will
serve as the starting point for the formulation of the boundary conditions to follow.

2. BOUNDARY TREATMENT

In the past, although researchers have investigated internal flow situations, the methodology for
treatment of boundary conditions has been crude and somewhat primitive in nature. In the context of
the Lagrangian particle-tracing scheme discussed earlier, formulation of boundary conditions implies
providing an answer to the query as to what happens to a particle as it approaches the wall. There are
several possibilities. The particle could strike the wall, in which case additional questions arise as to
with what angle and speed it would bounce back. In the past, two approaches have been used. In the
first approach the particles were simply reflected specularly from the wall, implying a zero-shear-
stress boundary condition. In the second approach, particles were made to reflect from the wall in
such a way that the shear stress condition at the wall, as prescribed by standard wall functions, was
satisfied. This strategy, however, violates the balance of local production, transport and dissipation of
the Reynolds stresses in the vicinity of the wall. An alternative and more scientific approach would be
to solve the stochastic equations all the way to the wall after appropriate modifications.
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Since the velocity gradients and Reynolds stresses change rapidly near the wall, the tensorGij,
which is a function of the gradient of the velocity and Reynolds stresses (equation (2)), also changes
rapidly. This implies that the forces acting on a stochastic particle due to the fluctuating pressure
gradient change significantly as the particle approaches the wall. The pressure fluctuations are
damped out as the wall is approached and the viscous forces start to dominate. Therefore, to
incorporate wall effects, attention needs to be focused on the tensorGij.

In the discussion to follow, expressions will be derived for all nine components of the tensorGij for
the inertial sublayer as well as the viscous sublayer. For the purposes of the current analysis the solid
wall will be assumed to lie in thex1–x3 plane,x2 being the co-ordinate axis normal to the wall, as
shown inFigure 1. Furthermore, it will be assumed that the predominant flow direction is alongx1

and the gradients of all hydrodynamic quantities are large in thex2-direction. The flow domain in the
x3-direction will be considered infinite. Such a scenario is typically what would be encountered in a
channel flow or tube flow or in any flow situation with a predominant flow direction and therefore
encompasses the vast majority of engineering applications. In fact, the preceding criteria are identical
with the validity criteria for the ‘law of the wall’ and therefore, the following derivation is valid for
any flow situation for which the ‘law of the wall’ may be considered valid.

With these assumptions, after term-by-term reduction and some tedious algebraic manipulation of
equations (2)–(6), the nine components ofGij for the near-wall region may be expressed as

G11 �
a1

t
�
a2

t
b11 � �g1 � g2 � g6�b12

d �U1

dx2
;

G12 �
a2

t
b12 � �b2 � g2b22 � g5b11�

d �U1

dx2
;

G13 �
a2

t
b13 � g2b32

d �U1

dx2
;

G21 �
a2

t
b21 � �b3 � g3b11 � g5b22�

d �U1

dx2
;

G22 �
a1

t
�
a2

t
b22 � �g1 � g3 � g5�b12

d �U1

dx2
;

G23 �
a2

t
b23 � g3b31

d �U1

dx2
;

G31 �
a2

t
b31 � g6b32

d �U1

dx2
;

G32 �
a2

t
b32 � g5b31

d �U1

dx2
;

G33 �
a1

t
�
a2

t
b33 � g1b12

d �U1

dx2
:

�7�

The above set of equations is valid for both the inertial sublayer and the viscous sublayer. In the
following sections, equation (7) will be simplified further using the ‘law of the wall’ to yield simple
analytical expressions forGij.
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2.1. The inertial sublayer

In terms of the notation described earlier, the log-law for the inertial sublayer may be written as11

�U1

U*
�

1
k

ln
x2

n
U*

� �

� B; �8�

wherek andB are constants, typically chosen to be equal to 0�4 and 5�0, respectively, andn is the
kinematic viscosity of the medium.U* is the friction velocity and is given by the expression

U* � C1=4
m k1=2

; �9�

whereCm is a universal constant equal to 0�09 andk is the turbulent kinetic energy, typically assumed
to be a constant equal to the value of the turbulent kinetic energy at the node adjacent to the wall.
Upon differentiation, equation (8) yields

d �U1

dx2
�

U*
kx2

: �10�

The time scale for the dissipation of turbulent kinetic energy,t, is the ratio of the turbulent kinetic
energyk and the rate of dissipation of the turbulent kinetic energy,E. In the inertial sublayer, using
Kolmogorov’s equilibrium hypothesis and scaling argument, the dissipation rate may be expressed11

as

E �
U3

*
kx2

: �11�

Using equations (9) and (11), the turbulent time scale may be expressed as

1
t
�

C3=4
m k1=2

kx2
: �12�

The task that now remains is to estimate the normalized anisotropic stress tensorbij for the inertial
sublayer. Experimental data indicate that the following universal estimates11 are valid for the inertial
sublayer:

u021 � 4U2
*; u022 � 0�64U2

*; u023 � 1�96U2
*; ÿu01u02 � U2

*: �13�

Figure 1. Co-ordinate system for near-wall analysis
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In addition, it will be assumed that, since the gradients in the azimuthal (x3) direction and the mean
velocity in the azimuthal direction are zero, the correlationsu01u03 andu02u03 are small compared with
the correlationu02u02. This may also be justified by gradient diffusion arguments. Using equations (10)
and (4), the tensorbij can be evaluated and is written in matrix form as

bij �

0�273 ÿ0�152 0
ÿ0�152 ÿ0�236 0

0 0 ÿ0�036

2

4

3

5: �14�

Substitution of equations (10), (12) and (14) into equation (7) yields the final expression forGij in the
inertial sublayer:

Gij �

ÿ0�44 1�27 0
ÿ0�39 ÿ1�67 0

0 0 0�93

2

4

3

5

k1=2

x2
: �15�

2.2. The viscous sublayer

In the viscous sublayer the primary velocity profile and its normal derivative are expressed as11

�U1 �
x2

n
C1=2
m k; �16�

d �U1

dx2
�

C1=2
m k

n
; �17�

wheren is the kinematic viscosity of the medium. In the viscous sublayer the turbulent fluctuations
are damped out completely by viscosity. Hence, all Reynolds stresses are zero and the quantityu0iu

0
j=k

assumes an indeterminate form. To evaluate this quantity in the viscous sublayer, one has to
investigate the rate at whichu0iu

0
j andk go to zero as the wall is approached. Following Hanjalic and

Launder,12 the velocity fluctuations are expanded in a series as a function of the normal distance from
the wall:

u0i � ai � bix2 � cix
2
2 � . . . ; �18�

for i � 1; 2; 3, whereai; bi andci are functions ofx1; x3 andt. Applications of ‘no slip’ and continuity
at the wall yields

u01 � b1x2 � c1x2
2 � . . . ; u02 � c2x2

2 � . . . ; u03 � b3x2 � c3x2
2 � . . . : �19�

Retaining terms up to leading order only, we obtain the relationships

u021 � b2
1x2

2 � o�x
3
2�; u022 � c2

2x4
2 � o�x

5
2�; u023 � b2

3x2
2 � o�x

3
2�;

u01u02 � b1c2x3
2 � o�x

4
2�; u02u03 � c2b3x3

2 � o�x
4
2�; u01u03 � b1b3x2

2 � o�x
3
2�:

�20�

Noting thatk � u0iu
0
i=2, it follows from equation (20) thatu0iu

0
j=k tends to zero asx2 tends to zero if

either i or j is equal to 2.
The dominant balance of terms of the Reynolds stress transport equation in the viscous sublayer

yields13

n
@

2�u0iu
0
j�

@xk@xk
� 2n

@u0i
@xk

@u0j
@xk

� Eij: �21�
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It states that the turbulent kinetic energy, while being transported by viscous mechanisms in the
viscous sublayer (the left-hand side of equation (21)), is completely dissipated (the right-hand side of
equation (21)), so that at the wall the Reynolds stresses are exactly equal to zero. In equation (21)Eij

denotes the anisotropic dissipation rate tensor. Dissipation takes place at the smallest scales of
turbulence. At large Reynolds numbers the small scales of turbulence are fairly isotropic. However,
near a wall the Reynolds number is small and the small scales of turbulence are anisotropic, resulting
in anisotropic dissipation rates of the various components of the Reynolds stresses. Rotta14 and later
Hanjalic and Launder12 proposed that the anisotropic dissipation tensor is equal tou0iu

0
jE=k. Durbin15

further proposed that in the extreme vicinity of the wallk tends toEx2
2=2n. In the light of these

propositions, equation (21) reduces to15

n
@

2�u0iu
0
j�

@x2
2

ÿ 2n
u0iu

0
j

x2
2

� o�x2�: �22�

The solution of equation (22) yields

u0iu
0
j � Aijx

2
2 � Bij=x2 � o�x

3
2�; �23�

whereAij andBij are local integration constants. The Reynolds stresses are zero at the wall, which
necessitatesBij � 0. Durbin15 suggests thatAij � 0 if either i or j is equal to 2, which is consistent
with the results obtained in equation (20). For the remaining components,Aij may be obtained by
ensuring the continuity of the Reynolds stresses at the edge of the viscous sublayer. The value ofx2 at
the edge of the viscous sublayer, denoted henceforth byx2L, is a matter of choice. Typically, a value
corresponding tox2� of 11 is considered appropriate.11 Using equations (4), (9), (12), (13) and (16)–
(23), we obtain

Gij �

ÿ1�9
p

k

x2
�

9�1n

x2
2L

ÿ
16�4x2n

2

p
kx4

2L

ÿ0�6k

n
�

1�7x2
p

k

x2
2L

0

ÿ0�22k

n
ÿ

0�3x2
p

k

x2
2L

ÿ1�9
p

k

x2
�

4�5n

x2
2L

ÿ
16�4x2n

2

���

k
p

x4
2L

0

0 0
ÿ1�9

p
k

x2
�

6�7n

x2
2L

ÿ
16�4x2n

2

p
kx4

2L

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

�24�

Equation (15) or (24), along with equation (8) or (16), when substituted into equation (1), yields a
set of six coupled ordinary differential equations. The solution to this set describes the path and
velocity of a stochastic particle in the near-wall region. In principle, this coupled set can be solved for
any given set of initial conditions. However, it appears impossible to obtain a closed-form analytical
solution. In the current investigation a fourth-order Runge–Kutta solver was used to obtain a
numerical solution to the set.

2.3. Behaviour of stochastic particles in the near-wall region

The first set of numerical experiments was run for a situation where the initial normal velocity
U2*�0� of the particle was varied. The streamwise initial particle velocity was set to zero, indicating
that the initial motion of the particle is normal to the wall and directed towards the wall. The mean
pressure gradient was set to zero. All velocities were normalized with respect to the square root of the
turbulent kinetic energy. This scenario, described earlier, is one that might be encountered in flow
over a flat surface or in a situation where the flow might be driven by external forces other than the
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mean pressure gradient. The motion of the particle was initialized atx2� � 300, which is typically
chosen as the outer edge of the inertial sublayer. The plus sign in the subscript indicates that the
quantity has been normalized byn=U*. The mean streamwise velocity�U1, as given by the log-layer at
the edge of the inertial sublayer, was found to be 10�82. Under this set of conditions the worst
(although rather unlikely) scenario may occur when the initial normal velocity of the particle is
approximately the same as the mean streamwise velocity.Figure 2shows the path of the particles for
various initial U2*. As the initial U2* is increased, the particle penetrates deeper into the near-wall
layer. ForU2*�0� � ÿ12�0 the particle enters the viscous sublayer and reverses its path, indicating the
validity of the viscous sublayer analysis. For large initialU2* the particle is seen to move in the
direction opposite to the mean streamwise flow. In the absence of a mean pressure gradient the only
force acting on the particle in the inertial sublayer is due to the fluctuating pressure gradient, which is
essentially modelled as a sum of normal stresses and shear-like surface stresses. The normal stresses
tend to drive the particles such that it catches up with the mean streamwise flow. However, for large
U2* the shear-like surface stresses decelerate the particle, causing it to move in a direction opposite to
the direction of the mean streamwise flow. Since the mean normal flow velocity is zero, when the
particle normal velocity changes sign, the shear-like surface stresses also change sign and from that
point onwards assist in the normal stresses, thereby accelerating the particle. For smallerU2* the
shear-like stresses are not sufficiently large to decelerate the particle. For this particular case the
deterministic component of the model dominates the transport of the particles and the diffusion term
is small. This is indicated by the fact that the fluctuations in the path are small.

When a favourable mean pressure gradient is applied, as in the duct flows, the particles accelerate
more and the negative streamwise velocities tend to become smaller in magnitude, resulting in smaller
negative displacement. Furthermore, the depth to which a particle penetrates the near-wall layer is
the same whether a mean streamwise pressure gradient is applied or not. In the same period of time,
however, the particles move further downstream if a favourable mean pressure gradient is applied.

In a duct flow a situation that one is more likely to encounter is one where the initial streamwise
particle velocity is almost the same as the streamwise mean velocity at the starting location.
Furthermore, since the normal mean velocity is very small in the near-wall region, it is likely that the

Figure 2. Particle paths in near-wall region for zero mean pressure gradient (full solid) and favourable mean pressure gradient
(broken line)
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normal particle velocity at the edge of the near-wall layer will be quite small.Figure 3illustrates the
paths of particles for various initial streamwise velocities. A normal particle velocity equal toÿ1�0
has been used for these simulations. Once again it is observed that for each case the particle reverses
its direction of motion normal to the wall. In general, if a particle of some arbitrary velocity is
injected into a flow, in the absence of diffusion the particle will try to reorient itself until it has
achieved the mean flow velocity. Having done so, it will simply flow along the mean flow. If the
initial streamwise velocity of the particle is larger than the mean streamwise velocity, the only way
that the particle can slow down to the mean flow is by moving towards the wall, whereby its
streamwise velocity can decrease. This is evident in Figure 3 from the fact that, as the initialU1* is
increased, the particle penetrates deeper into the layer. This is quite interesting, because the normal
initial velocities were the same in all four cases. However, the deeper the particle penetrates, the
smaller is the mean streamwise velocity, and hence it travels for larger lengths in the streamwise
direction before it is able to catch up with the mean flow. This is indicated by the fact that the minima
in the curves in Figure 3 shift towards the right for the cases whereU1*�0� > �U1, namely whenU1*�0�
is equal to 11�0 and 13�0. In this case the paths of the particles show much more randomness, on
account of the fact that the random diffusion term is comparable with the deterministic component,
since the initial fluctuation is small.

Several other combinations of initial conditions are possible. For the sake of brevity, only the ones
that might be commonly encountered have been discussed. The details regarding implementation of
this boundary scheme in the context of a full-scale Monte Carlo simulation will be discussed later in
Section 4.

3. VELOCITY–PRESSURE COUPLING

3.1. Pressure correction

In the Monte Carlo scheme the particle-tracing equations (the first equation of (1)) are in essence
Lagrangian momentum equations and are marched in time. Since the velocity and pressure fields are
coupled, time marching implies that the pressure changes at every time step and one should solve the
momentum and continuity equations simultaneously at every time step. However, this would be an

Figure 3. Particle paths in near-wall region for various initial streamwise velocities
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extremely time-consuming procedure. The alternative is to time march the continuity equation as well
and solve for all the variables as a block. This methodology is typically adopted for transonic flows.
In an incompressible flow, since the continuity equation does not have a time derivative, artificial
compressibility has to be used to time march the continuity equation. This is a somewhat tricky
proposition, especially in the context of Monte Carlo time stepping. An alternative way is to use a
predictor–corrector scheme to correct the pressure at every time step. At a given time stepn� 1 the
momentum and continuity equations will be simultaneously satisfied if and only if

r

�Un�1
i ÿ �Un

i

Dt
�h� �Un�1

i � ÿ Di �p
n�1

; �25�

Di
�Un�1

i � 0; �26�

where the superscripts imply time indices,Di is the divergence operator when acting on a vector and
the gradient operator when acting on a scalar, andh is a function consisting of the convective,
viscous and turbulent transport terms in the Reynolds-decomposed averaged Navier–Stokes equation.
The exact expression forh is irrelevant for the purposes of this discussion. Equations (25) and (26)
have to be solved implicitly and in a coupled fashion to obtain the velocity and pressure fields at the
current time stepn� 1. However, in the present situation this is not feasible, because the Eulerian
velocity field is not calculated directly. It is obtained instead by spatial averaging of the Monte Carlo
solution. To avoid this difficulty, an approximate velocity field^Ui at the current time step is first
predicted by using the pressure field at the previous time step such that

r

^Ui ÿ �Un
i

Dt
�h� �Un

i � ÿ Di �p
n
: �27�

Note that equation (27) enables us to calculate^Ui explicitly. This is the first predictor step. Since
^Ui has been obtained by using the pressure at the previous time step, it will not in general satisfy
continuity. Continuity is satisfied by seeking a new velocity field^

^Ui along with a new pressure field̂p
such that

r

^

^Ui ÿ �Un
i

Dt
�h� ^Ui� ÿ Dip̂; �28�

Di
^

^Ui � 0: �29�

The divergence of equation (28) yields

r
Di

^

^Ui ÿ Di
�Un

i

Dt
� Dih� ^Ui� ÿ H

2p̂; �30�

and using equation (29) and rearranging, we have

H
2p̂ � Dih� ^Ui� �

r

Dt
Di

�Un
i : �31�

The corrector step consists of solving equations (31) and (28) in sequence. For an incompressible
flow the quantityDih � �Ui� is expressed as1

Dih� �Ui� � ÿr
@

2

@xi@xj
� �Ui

�Uj � u0iu
0
j�: �32�
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The second term on the right-hand side of equation (31), when integrated over a control volume,
represents the mass defect of the control volume. The aforestated pressure correction strategy is very
similar to the PISO algorithm,10 except that in this case the first predictor step is explicit in time, as
opposed to implicit in the original PISO algorithm. This difference places some restriction on the
time step used in the time-marching scheme, especially since the functionh is non-linear. Details
regarding the choice of time step will be discussed later. Issa10 has shown that two such predictor-
corrector steps at every time step are adequate to ensure accuracy and stability of this pressure
correction scheme.

To facilitate future formulations and descriptions, the following equations are written:

�U c
i �

^

^Ui ÿ �Un
i ; �33�

where �U c
i will be referred to as the ‘velocity correction’ and from equation (28) is expressed as

�U c
i �

Dt

r
�h� ^Ui� ÿ Dip̂�: �34�

3.2. Solution algorithm

In this subsection, a solution algorithm applicable to an elliptic flow situation will be described. In
addition, important points pertaining to some of the steps in the algorithm will be highlighted to make
the reader aware of theprosandconsof this solution strategy. The solution algorithm may be broadly
outlined as follows.

1. The particle positions and their velocities are initialized. As opposed to what has been done by
researchers in the past,6 the mean velocity field can be set arbitrarily as long as it satisfies the
global conservation laws. A good choice is to initialize the entire field with the same mean
velocity everywhere. This may be achieved by setting the particle velocities as being equal to
a random Gaussian deviation added to a single global mean.

2. The computational domain is broken up into cells (similar to finite volume cells). For Monte
Carlo accuracy if it desirable to keep the cells as large as possible as long as the spatial
truncation errors do not exceed the statistical error bounds. This is somewhat of a trial-and-
error procedure.

3. The mean quantities in each cell are then computed as described by Pope.1 For non-constant
density flows, conventional means must be replaced by density-weighted (Favre) means.

4. The raw averages are then smoothed. Details on smoothing procedures can be found in De
Boor’s book16 on splines and in Reference 9. This smoothing operation is an absolute
necessity, as pointed out by Pope.1

5. All necessary gradients are computed next.
6. The particles are then marched one step in time using equation (1) and explicit time stepping.

For particles close to a wall the reduced set of equations described in Section 2 is used. Details
on the implementation of boundary conditions are discussed in Section 4. An arbitrary
pressure gradient may be used, preferably one that is small.

7. At this stage the particles have stepped forward in time. This marks the completion of the first
predictor step. Steps 4 and 5 are repeated.

8. Equation (31) is solved using any standard iterative technique and a finite volume formulation.
9. Equation (34) is solved to obtain the velocity correction and equation (33) is used to update the

velocity field. This is the first corrector step.
10. Steps 4,5,8 and 9 are repeated one more time, for reasons which have been discussed in the

previous section.
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11. The particles are now ready to take the next step in time. However, before that, the particle
velocities have to be updated as well to make them consistent with the mean updated velocity
field. This is done by adding the same velocity correction as obtained in step 9 to the particle
velocities at the previous time step. Since the mean and particle velocities are both corrected
by the same amount, this implementation not only keeps the two velocity fields consistent but
also ensures that the turbulent kinetic energy remains unchanged.

12. Steps 6–11 are repeated until a steady state solution is reached.

Since the Monte Carlo simulation is a statistical method of solution, it is difficult to detect when
steady state has been reached. An effective way is to compare the pressure profiles at two successive
time steps. Once steady state has been reached, the change in the pressure field will be small. The
easiest way to monitor convergence is to ensure that the norm of the mass defect always stays below
its value at the start of the simulation.

In the solution algorithm just described, as opposed to strategies used by researchers in the past, the
necessity to run a full-fledged finite volume calculation alongside a Monte Carlo simulation is
completely eliminated. The initialization of the Monte Carlo scheme is very straightforward and does
not require solutions obtained from a full-scale finite volume code. The only equation that is required
to be solved using a finite volume technique is the pressure Poisson equation (equation (31)). Upon
finite volume discretization of equation (31) it can be seen that the coefficients for the interior nodes
are functions of the cell sizes only and need to be computed only once during the entire simulation.
Only the source terms and the coefficients for the cells adjacent to boundaries need to be computed at
every time step. This is a distinct advantage, in addition to the fact that one does not have to take the
Monte Carlo solution to full convergence for every pressure update. Furthermore, this pressure
correction scheme does not requiread hocspecification of underrelaxation factors.

4. RESULTS OF SAMPLE CALCULATIONS

The test problem considered here is that of an isothermal, non-reacting, incompressible turbulent flow
through a channel. The flow is two-dimensional in the mean, which implies that the gradients of all
mean quantities in thex3-direction are zero. The channel under consideration is 10 m long and has a
height of 1 m. The inlet mean velocity is 1 m s71 and has a plug profile. The density and viscosity of
the fluid are then adjusted such that the Reynolds number based on the inlet velocity and channel
height is 106. At such a high Reynolds number the channel length required to achieve fully developed
flow at the exit is quite large, which would imply that the Monte Carlo simulation has to be run for a
substantial length of time before steady state is reached. To avoid this problem, a moderate length of
10 m was chosen and a fixed back-pressure was specified over the entire outlet cross-section. For this
particular case the back-pressure was set to zero.

For the purpose of Monte Carlo calculations the entire volume was divided into 400 spatial cells
and 30,000 ‘particles’ were used. The pressure calculations were performed using the same grid. In
the past,6,9 researchers have typically used a time step equal to one-tenth of the smallest turbulent
time scale for the Monte Carlo simulation. In the present case, on account of the explicit nature of the
pressure correction scheme, a slightly conservative time step equal to one-thirtieth of the smallest
turbulent time scale was used. To implement the boundary conditions for the Monte Carlo simulation,
the following steps were adopted.

1. After every time step, all particle positions were checked to see whether any of them had
crossed a solid wall.

2. If a particle had crossed the wall, then the time taken to reach the edge of the near-wall layer
was calculated.
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3. The position and velocities of the particle were calculated at the edge of the layer using a single
explicit step in time. These served as initial conditions for calculations to be performed over the
remaining part of the time step.

4. The reduced set of equations was solved using a Runge–Kutta method over the remaining part
of the time step. For the sample calculations a Runge–Kutta step equal to one-hundredth of the
original time step was used. However, this depends on the problem at hand and requires some
degree of trial-and-error optimization. Adaptive Runge–Kutta schemes are computationally
expensive, and since a Monte Carlo simulation involves several thousand particles, it is not
worthwhile to use an adaptive Runge–Kutta scheme for such applications.

5. The Runge–Kutta calculations were continued until the time step was over or the particles left
the near-wall layer.

6. If the particle was observed to exit the layer, the remainder of the time step was used to march
the particle explicitly in time, using the exit conditions as initial conditions and the mean
quantities of the local cell as the driving forces.

7. If the particle was observed to stay within the layer after a full time step, the Runge–Kutta
calculations were commenced again at the beginning of the next time step.

Smoothing of the raw data obtained by averaging the Monte Carlo data was performed using two-
dimensional least-squares B-splines.16 Splines were fitted to all mean quantities that appear on the
right-hand side of equation (32). Each cell was broken up into four subcells in order to provide more
data points for the spline fit, and variable knots were used to fit the raw data set more accurately. In
this particular case, cubic and fifth-order splines were used for the axial (x1) and cross-stream (x2)
directions respectively. The calculation of the mass defect term in equation (31) is very critical
because it ensures that continuity and momentum are satisfied simultaneously. This term can be
calculated directly from Lagrangian information, as discussed by Pope.1 However, to achieve the
desired level of accuracy, it is necessary to use a very large number of particles. This issue has been
addressed in detail in Reference 6. Alternatively, this term can be calculated by finite volume
discretization of the mean Eulerian velocity field. This is the methodology that has been used here.
However, in this study, as mentioned earlier, since a co-located grid system has been used (as
opposed to a staggered grid system), simple central differencing to obtain mass fluxes at cell
boundaries will result in checkerboard pressure oscillations.17 To overcome this problem, artificial
dissipation, as suggested by Rhie and Chow,18 was added to the pressure equation. The discretized
pressure equation was solved using Stone’s strongly implicit method.19 Typically it required only
about 10 iterations to reduce the norm of the residuals by six orders of magnitude.

The calculation of the turbulent time scale requires the solution forE at all spatial locations. This
may be achieved by solution of a transport equation forE. The transport equation forE has to be
modelled prior to its solution, and owing to the lack of adequate tools, the gradient diffusion
hypothesis11 is typically used in modelling the correlations arising from the non-linear convection
transport terms. The gradient diffusion hypothesis, as pointed out by Bray and Libby,20 is an
extremely questionable hypothesis for turbulent flows with non-constant density. The solution to this
problem is to includeE within the joint PDF itself and to solve for it as an additional scalar. Since the
PDF formulation is Lagrangian, such a treatment would enable the exact treatment of convective
transport terms. However, this is still a topic of current research.21 In the current study, for the sake of
simplicity, a simple algebraic model13 has been used whereby

E �
ck2

nT
; �35�
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where the constantc is equal to 0�07 and nT is the kinematic eddy viscosity, which has been
expressed using a modified form of the Van Driest model,

nT � k
2x2

2 1 ÿ exp ÿ
x2U*
nA�

� �� �2
@

�U1

@x2
� s

�

�

�

�

�

�

�

�

; �36�

wheres was chosen to be a small number to avoid singularity in the expression forE. The constant
A� is equal to 26�0.

In the current study, results obtained from PDF calculations are compared withk–E and algebraic
Reynolds stress model (ARSM)13 calculations. The ARSM calculations have also been used as a
comparison for the Reynolds stressu01u02. The k–E and ARSM results were both obtained using the
commercial code Harwell-FLOW3D with 40650 finite volume cells.

Figure 4illustrates axial mean velocity profiles at various axial locations. It is seen here that at all
four axial locations the agreement of the velocity profiles obtained by the three different models is
excellent.Figure 5shows secondary velocity profiles at two different axial locations. At a distance
very close to the inlet the maximum secondary velocities occur in a region very close to the wall, as
shown in Figure 5(a). As the flow develops, the peak in the profile shifts towards the channel
centreline. This is evident in Figure 5(b). The ARSM is observed to predict larger values for the
secondary flow velocity, especially close to the inlet. It is important to note here that the PDF method

Figure 4. Mean axial velocity profiles usingk–E (full line), ARSM (broken line) and PDF (chain line) at (a)x1�0�125 m, (b)
x1�2�625 m, (c)x1�7�625 m and (d)x1� 9�875 m
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successfully predicts the shift in the peaks of the curves in going from the inlet to the exit. The
profiles for the turbulent kinetic energy have been illustrated inFigure 6. The oscillations in the
profiles in the region close to the channel centreline resulted from fitting splines throughout the data
set. Discrepancies in the turbulent kinetic energy profiles predicted by the PDF method and the two
classical methods might have also resulted from the fact that the calculation procedure forE is
different. It is a well-known fact that the Van Driest model is not very accurate for regions far from
the walls.Figure 7illustrates profiles foru01u02. The ARSM predicts larger Reynolds stresses than the

Figure 5. Mean cross-stream velocity profiles at (a)x1� 0�125 m and (b)x1� 9�875 m

Figure 6. Turbulent kinetic energy profiles at (a)x1� 0�125 m and (b)x1�9�875 m

Figure 7. Reynolds stress profiles at (a)x1�0�125 m and (b)x1�9.875 m
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PDF method. The ARSM is formulated on the premise that the ratiou0iu
0
j=k is a constant. While more

realistic than the assumptions in thek–E formulation, it does not describe the redistribution of the
various components of the Reynolds stresses.Figure 8 shows a comparison between centreline
pressures for the different methods. The pressure drop across the whole length of the channel as
predicted by the PDF and ARSM calculations is larger. One of the terms occurring in the source term
of the pressure equation (32) is the cross-derivative of the Reynolds stressu01u02. Thus these
predictions are consistent with the Reynolds stress predictions shown in Figure 7.

5. CONCLUSIONS

The generalized Langevin model, which, to date, had only been applied to the core region of a
turbulent flow, has been extended to incorporate wall effects in internal turbulent flows. It was
observed that the stochastic particles never collide with the wall and retrace their paths back to the
core of the flow. The methodology was applied to a full-scale two-dimensional channel flow problem
and results obtained were in good agreement withk–E and algebraic Reynolds stress calculations.

The PDF calculations proved more time-consuming than thek–E calculations by a factor of about
four. However, the motivation for using the PDF method lies in the fact that it can be applied
relatively easily to problems involving a higher degree of complexity, namely turbulent reactive
flows. For simple problems such as the one considered in this study, the Monte Carlo overheads
(drawing random numbers, sampling the raw data set, smoothing the data set, etc.) constitute a
substantial fraction of the total computational time and therefore, PDF calculations prove to be less
efficient thank–E calculations. With increase in complexity, these overheads increase much less in
comparison with the time spent in the actual particle-tracing process and hence, the returns provided
by the Monte Carlo scheme increase.

One of the fundamental problems encountered in internal flow calculations is the calculation of the
pressure field. In this article a pressure algorithm based on the PISO algorithm was developed and
used effectively. This pressure correction scheme derives its advantages from the fact that in the PDF
method the momentum equations are marched in time, while the continuity equation cannot be
marched in time for an incompressible flow. The calculation of the source terms of the pressure

Figure 8. Centreline mean pressure
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equation was observed to be very sensitive to the number of particles used for the simulation and the
smoothing technique employed in their calculation. The smoothing procedure involves a certain
degree of trial and error, and in the opinion of the present authors needs a more consistent and robust
mathematical formulation than the ones currently available. This may be set as a developmental task
for researchers in this area.
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APPENDIX: NOMENCLATURE

bij normalized anisotropy tensor
fuf velocity–composition joint PDF
Gij tensor in generalized Langevin model
Hijkl tensor appearing in expression forGij

k turbulent kinetic energy
n time index
�p mean pressure
t time
u0i velocity fluctuation
U* friction velocity
Ui* particle velocity
U instantaneous Eulerian velocity vector
�Ui mean Eulerian velocity
�U c

i velocity correction
xi space variable
x2L x2 at edge of viscous sublayer
xi* position vector of particle

Greek letters

ai; bi; gi constants in equation forGij

E rate of dissipation of turbulent kinetic energy
Eij dissipation rate tensor
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